A geometric characterization of non-atomic measure spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Banach Space Characterization of Purely Atomic Measure Spaces

It is well known [4, p. 265; 3] that the space 7,i[0, l] is not isomorphic with a conjugate space. At the other extreme, it is also well known that h is isometric with the conjugate space of Co. Each of these is an example of a space of all real-valued integrable functions over a measure space (T, p), a major difference between them being that the measure space underlying 7_i[0, l] has no atoms...

متن کامل

Geometric non commutative phase spaces

The aim of this paper is to describe some geometric examples of non commutative and cyclic phase spaces, filling a gap in the literature and developing the project of geometrization of semantics for linear logics started in [12]. Besides, we present an algebraic semantics for non commutative linear logic with exponentials.

متن کامل

Values of Non - Atomic Vector Measure Games

Consider non-atomic vector measure games; i.e., games u of the form u = f o(pI.. . ,p.), where (pIr.. .,p.) is a vector of non-atomic non-negative measures and f is a real-valued function defined on the range of (pi,. . .,pi.). Games of this form arise, for example, from production models and from finite-type markets. We show that the value of such a game need not be a linear combination of the...

متن کامل

Purely Non-atomic Weak L P Spaces

Let (Ω,Σ, μ) be a purely non-atomic measure space, and let 1 < p < ∞. If L(Ω,Σ, μ) is isomorphic, as a Banach space, to L(Ω,Σ, μ) for some purely atomic measure space (Ω,Σ, μ), then there is a measurable partition Ω = Ω1 ∪Ω2 such that (Ω1,Σ ∩ Ω1, μ|Σ∩Ω1) is countably generated and σ-finite, and that μ(σ) = 0 or ∞ for every measurable σ ⊆ Ω2. In particular, L(Ω,Σ, μ) is isomorphic to l.

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 1973

ISSN: 0025-5831,1432-1807

DOI: 10.1007/bf01428265